top of page

Scale By The Bay

Code and Data in the Age of AI

The 10th Anniversary SBTB is coming back for its best year ever!​

November 13, Production-ready LLMs Workshop

November 14-15, Main event


Scottish Rite Center, Oakland

About the event

Scale By the Bay is a developers' own conference. It is a community conference with the best Bay Area meetups and technologies powering the global leaders in data, operations, ML, and the art and craft of software engineering.

Our tracks are always at the confluence of three themes: programming, distributed systems, and data. This year we are also adding the Open-Source Science track, accelerating human progress in finding new materials and cures to safeguard the future of the planet.

Since 2020, SBTB has been produced by Konfy, an all-women team of conference organizers creating events with love, by developers, for developers.


Feel the atmosphere


Keynote Speakers


Chris Lattner is a co-founder and the CEO of Modular, which is building an innovative new developer platform for AI and heterogenous compute.


Modular provides an AI engine that accelerates PyTorch and TensorFlow inference, as well as the Mojo🔥 language, which extends Python into systems and accelerator programming domains.

He has also co-founded the LLVM Compiler infrastructure project, the Clang C++ compiler, the Swift programming language, the MLIR compiler infrastructure, the CIRCT project, and has contributed to many other commercial and open source projects at Apple, Tesla, Google and SiFive.

Chris Lattner

Modular, Co-founder and CEO

Gwen Shapira

Gwen is a co-founder and CPO of Nile. She has 20+ years of experience working with code and customers to build reliable and scalable data architectures - most recently as the head of Cloud Native Kafka engineering org at Confluent.


Gwen is a committer to Apache Kafka, author of “Kafka - the Definitive Guide” and "Hadoop Application Architectures."

You can find her speaking at tech conferences or talking data at the SaaS Developer Community.

Nile, Co-founder and CPO


Anthony Annunziuata

Dr. Anthony J. Annunziata leads a global team bringing together foundation model and generative AI, quantum, and high performance hybrid cloud computing to deploy a revolutionary new technology platform to accelerate discovery and solution creation in science and business.

As a core part of this mission, Anthony and team are cultivating a new community of partners, developers and scientists to advance the application of this advanced technology to challenges in health, climate, energy, manufacturing, and beyond that are crucial to societal progress and prosperity.

IBM, Director and General Manager (Product, Engineering and GTM), AI and Quantum Accelerated Science

Leah McGuire

FarosAI, Machine Learning Engineer

Leah has spent the last two decades working on information representation, processing, and modeling. She started her career as a computational neuroscientist studying sensory integration, and then transitioned into data science and engineering.


Leah worked on developing AutoML for Salesforce Einstein and contributed to open sourcing some of the foundational pieces of the Einstein modeling products. She has brought her focus on making it easy to learn from expensive to generate and collect datasets to her work in everything from job search, to sales, to biotech, to engineering productivity.


Leah currently works as Machine Learning Engineer at FarosAI (an engineering intelligence platform) developing the native AI capabilities.


GG Moon.jpg

Building production-ready LLM-powered applications

Josh Tobin, Gantry & Full Stack Deep Learning

The way AI-powered apps are built has changed:

* Before LLMs, an idea would bottleneck on training models from scratch, and then it'd bottleneck again on scalable deployment.
* Now, a compelling MVP based on pretrained LLM models and APIs can be configured and serving users in an hour.

An entirely new ecosystem of techniques, tools, and tool vendors is forming around LLMs. Even ML veterans are scrambling to orient themselves to what is now possible and figure out the most productive techniques and tools.


In this course, we'll teach you how to build AI-powered applications from scratch, while following the best practices that will allow you to balance shipping quickly with building high-quality, production-ready applications your users trust. We'll walk you through a structured approach to AI app development loosely based on the test-driven development methodology used in traditional software engineering.

Group 1261152885.png


SBTB started as a conference of the Silicon Valley meetups.
Our members build the new world


Hungry to learn more? Check out our Youtube channel.

bottom of page